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INTRODUCTION

If u is a continuous function on [0, 1], then Lnu(p) = L~~o u(kjn)G)
pk(1 - p)n-k converges to u(p) uniformly on [0, 1]. Although probabilistic
terminology is not necessary for the proof, it is valuable in that it makes the
result obvious. Namely, in probabilistic language this says that Lnu(p) is the
expected value of u(Xjn) , where Xis a binomial random variable. For large n,
Xjn will, with high probability, be very close to p and hence the expected value
of u(Xjn) will be close to u(p). The details of this simple probabilistic
argument are in Feller [4].

What often distinguishes probability theory from pure measure theory is
that probabilistic terminology can make difficult measure theoretic results
intuitive. In this paper we present an approach to positive linear approx­
imation based on probabilistic notation and methods. Korovkin (5) was
apparently aware of connections between his subject and probability theory
when hc wrote "Linear Operators and Approximation Theory," but choose
to phrase his results in the language of analysis. This practice has continued.
One purpose of this paper is to remove the language barrier and thus to draw
the attention of those in probability and those in approximation theory to
results of common interest.

Section 1 is devoted to proving some old and new Korovkin type theorems.
Although the main tool is a version ofTchebycheff's inequality, the concept of
a random variable as either a function on an abstract probability space or as
a coordinate function on Rn plays a central role in simplifying results and
suggesting new ones.

In Section 2 we use these Korovkin type theorems to prove results related
to the characterization of conditional expectation operators due to Moy [6J
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and Bahadur [1]. We find that these results III turn have an interesting
interpretation in approximation theory.

1. Bohman and Korovkin proved that if L n is a sequence of positive
linear operators on C[a, b] such that Ln(l) -- 1, Ln(x) ->- x, and Lix2) __ x 2

uniformly, then for all I in C[a, b], Ln(f) -- I uniformly. A related result
states that if L n is a sequence of positive linear operators on the continuous
periodic functions on [0,27T] such that Ln(l) -- 1, Licos B) -- cos B, and
Ln(sin B) -- sin B uniformly, then for all continuous periodic f, Ln(f) -- I
uniformly.

Since then there have been many papers devoted to refining and extending
these results. Yet despite the variety of methods the Riesz representation
theorem has not been exploited. It gives the representation Ln/(B) =
taj(t) dfLn,e(t), where fLn.e are positive measures. Combined with some
elementary probabilistic arguments it makes the Bohman-Korovkin theorems
transparent and leads to some interesting extensions as well.

In this section L n is a sequence of positive linear operators from the space
C(X) of continuous real or complex-valued functions on a compact Hausdorff
space into the space of all functions of X. These assumptions are needed in
order to employ the Riesz representation theorem in describing L n . Alter­
natively we could allow L n to act on a more general space, but assume L n is
of the form above. This is the approach of Stancu [7]. A third possibility is to
assume L n acts on the bounded measurable functions on some probability
space. Then any It ,... ,In, are random variables and can be identified with
the coordinate functions on a compact subset X of Rn Cendowed with an
induced probability distribution). The continuous functions of j~ ,... ,/n ,
then are identified with C(X). L n restricted to such functions would then have
a form as given by the Riesz representation. This is the approach taken in
Section 2.

If fL is a probability measure on some space and I = Cit ""'/n) is a
measurable vector-valued function, I is called a random vector and
fldfL = CfltdfL, ... ,flmdfL) is written E(f) and called the expectation off
f II - E(f)[2 dfL is written Var(f) and called the variance of f Note that
Var(f) = E(1/1 2) - I E(f)1 2. The following lemma is a generalization of
Tchebycheff's inequality.

LEMMA 1. IfI is a random vector with respect to a parameterizedlamily 01
probability measures Pn,e such that En,e(f) -- m(B) uniformly in 8 as
n -- 00 and Varn,e(f) -- °uniformly in B as n -- 00, then lor any 8 > 0,
Pn,e{t I Ijet) - m(B)1 ~ 8} -- °uniformly in n. (In the proo/we suppress the t
in the notation.)
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Pn,8(lf - m(O)! ~ 0) < (1/82) En,8(lf - m(O)1 2
)

= (1J8 2
) En ,8([U - En .8(/») + (£"',8(/) - m(O)1 2

)

= (1/02)(Varn.if) + I En ,8(/) - m(0)i 2),

since the cross terms have expectation zero. Thus if Varn,if) ~ 0 uniformly
in 0 and £n,8(/) ~ m(O) uniformly in 0, then Pn,8(lf - m(O)! ~ 8) ~ 0
uniformly. r::J

THEOREM 1. Assume L n is a sequence of positive linear operators from
C(X) into the space ofallfunctions on X, where X is a compact Hausdorffspace,

If
L n(1) ~ 1 uniform(v

andfor Ii in C(X), i = 1,... , m

Ln(j,) ~ Ii uniformly

and

(1)

(2)

(3)

where f = Ul ,.. ·,fm) then for all g of the form u(/) with u continuous on the
range ojf, L n( g) ~ g uniformly.

Proof Since Ln(l) ~ 1 uniformly, Ln(h) ~ h uniformly jf and only if
LnCh)/Ln(l) ~ h uniformly. We may therefore assume without loss of
generality that Ln(l) = 1.

For each 8 in X the map h ~ Ln(h)(O) is a positive linear functional and
by the Riesz representation theorem

where j-tn,8 is a sequence of probability measures for each 8. By hypothesis (2),
L,,(/)(O) = E".8(/)~ f(O) uniformly and since If(O)[ is bounded I E",gff)1 2~

i1(0)12 uniformly. By hypothesis (3), L,,(lfi 2) = £".8(lfI2) --+ [f(0)[2
uniformly. Combining these last two results, Varn,e(/) = E n •8(1fI 2) ­

I £",8(/)1 2 converges to zero uniformly.
Now let g = u(/) with u continuous on the range off Since X is compact,

u is bounded and uniformly continuous on the range off There then exists
an M and 8 such that

I u(/)1 < M and 1f(t) - f(t')1 < 8 => I u(/(t) - u(/(t'»[ ~ E/2.
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I Lng(B) - g(B) I = I En.e(u(f» - u(f(B» I
= IEn.e(u(f) - u(f(B») [

::( Ej2 + 2M(kn.e{lf - f(B)[ ?;: 8}.

Since En,e(f) -?- f(B) and Varn.e(f) -?- ° uniformly by Lemma 1,
(kn,e{lf - f(B)[ ?;: 8} -?- °uniformly in -?- B. It can be made less than Ej4M
uniformly in Bfor n large enough. Thus Ln( g) -?- g uniformly. 0

Next notice that functions of the form u(f) have a simple interpretation.

LEMMA 2. If g is continuous on a compact set and f(x) = fey) ~
g(x) = g(y), where f is a continuous vector-valued function then g = u(f),
where u is continuous on the range off

Proof Since f(x) = fey) ~ g(x) = g(y), g can be written as some
function off, say g = u(f). If u is not continuous on the range offthere is a
closed setFfor which u-1(F) is not closed in the range off But thenf-1(u-1(F»
is not closed since the domain off is compact. Thus u(f) is not continuous
contradicting the hypothesis. 0

The lemma leads to a restatement of the theorem.

THEOREM 1'. Under the hypotheses of Theorem 1, Ln( g) -?- g uniformly
for all gin C(X) satisfying g(x) = g(y) whenever f(x) = fey). In particular,
iffis 1-1, LnC g) -?- g for all gin C(X).

COROLLARY 1. The Second Bohman-Korovkin Theorem. Let X = [0,27T].

IfLn is a sequence ofpositive linear operators on C(X),

(1) Lil) -?- 1 uniformly,

(2) Ln(cos A) -?- cos ,\ uniformly,

(3) Ln(sin ,\) -?- sin Auniformly,

then Lig) -?- g uniformly for all g periodic on [0,27T].

Proof f = (cos A, sin'\) is 1-1 except that f(O) = f(27T) and Ij2 I = 1
so that L n(1) -?- 1 ~ L n(lfI 2

) -?- If12• 0

Furthermore we have the obvious generalization,

COROLLARY 2. Let X be a compact Hausdorff space and Ln a sequence of
positive linear operators on C(X), then if(l) Ln(l) -?- 1 uniformly and for Ii in
C(X), i = 1, ... , m with If I = constant, (2) LnUi) -?-Ii uniformly, then for allg
in C(X) satisfying g(x) = g(y) whenever f(x) = fey), Ln(g) -?- g uniformly.
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For example, if X is the sphere x 2 + y2 + Z2 = 1 and L nl -+ 1, Lnx -+ x,
Lny -+ y, Lnz -+ z uniformly on X then for all g continuous on the sphere
Lng -+ g uniformly.

COROLLARY 3. Let X be any compact set in Rn. Let L n be a sequence of
positive linear operators on C(X). If

(1) L n(1) -+ 1 uniformly,

(2) Ln(Xi) -+ x uniformly, where Xi are the coordinate functions, and

(3) LnC'f, Xi2) -+ L Xi2 uniformly,

then for all gin C(X), Ln(g) -+ g uniformly.

Proof (Xl"'" Xn) is 1-1. 0

Corollaries 2 and 3 extend results ofVolkov and Morozov (see Censor [2]).

2. In this section we combine concepts of uniform approximation
with those of mean-square approximation. We assume L is a positive linear
operator on 2 2(fL), where fL is a probability measure. An example of such
an operator would be convolution with a Fejer kernel,

Lnf(x) = (1/277")r f(t) Kn(x - t) dt,
-1r

1 [ sin(nx/2) ]2
where Kn(x) = - -.(-/2)n sm X

Here, Lnfis the average of Fourier series of f of increasing degree. L n is then
a sequence of positive linear operators such that for all f in 2 2(dt), Lnf
converges to fin mean square and for all continuous periodicf, Lnfconverges
to funiformly. For other examples, see Dzjalyk [3].

In the spirit of Korovkin we find conditions on Land f so that Lf = f
We then use these results to give a simple proof of an important result in
probability theory.

THEOREM 2. Assume L is a positive linear operator on 2 2(fk) and assume
Ll = 1 and Lgi = gi for i = 1,... , k. Then for any convex function u with
U(gl , ... , gk) in 2 2(fL), LU(gl , ... , gk) ); U(gl , ... , g/c).

Proof For any point Xo = (gl(W), ... , giw)) there is a linear function 10

with graph through (xo , u(xo)) and lying below the graph of u(x). (In fact,
this is how we define a convex function.) Then LU(gl ,... , g/c) );
L(lO(gl , ... , g/c)) = lo(gl ,..., gk), the first inequality due to the positivity
of L and the second inequality due to the linearity of 10 and the assumptions
on L. In particular, LU(gl ,... , gk)(W) ); lo(gl ,... , g/c)(w) = u( gl ,... , g/c)(w)
and w is arbitrary. 0
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COROLLARY 1. If we also assume the gi are bounded and either II L II = 1
or L = L * then Lf = f for all fin 5£'2(",,) of the form F(gl ,... , gk)'

Proof In the theorem let U(gl , ... , gk) = I: gi2. Then L(I: gl) ~ I: g,2.
But if II L II = 1 then there must be equality. If L = L * then f L(I: g,2)1 d"" =

fI:gi2(Ll)d"" = fLg,2d"" and again we must have L(I:gl) = Lig,2.
Now identify the random variables gi with the coordinate random variables
x, on Rk and apply Corollary 3 of Section 1. Since the g;'s are bounded we
may restrict the x/s to a compact set in Rk. Then L1 1, Lx, = Xi, and
L(I: X;2) = L xt Hence L is the identity on continuous functions of
Xl , ... , X lc . Then by either the boundedness or self adjointness we conClude
that L must be the identity on all 5£'2 functions of the form F(gl ,... , glc)' 0

To overcome the boundedness assumption on the g/s we now assume that
L is idempotent.

COROLLARY 2 (Moy-Bahadur). If L is a positive orthogonal projection
with L1 = 1, Lg, = g;, i = 1,... , k then Lf = ffor allfin 5£'2(",,) of the form

F(gl ,... , gk)'

Proof Let g"m = g; truncated so Ig;,m I :;(; M. Then by positivity
ILgi,m I :;(; M and L(Lg,.m) = Lgi,m since L is a projection. Hence by
Corollary 1, Lf = ffor f of the form F(Lgl,m ,... , Lglc,m).But

II Lg,.m - g, II = II Lg;,m - Lg; II :;(; II g"m - gi II --+ O.

Hence for bounded continuous F, LF(gl ,... , glc) = F(gl , ... , glc)' Since
II L II = 1 this equality extends to all F(gl ,... , g/c) in 5£'2(",,). 0

A projection onto subspaces of functions of the form F(gl ,..., g/c) is a
conditional expectation operator, hence the significance of this result in
probability. However, it also has significance in approximation theory,
mainly of a negative character. It says that approximation using projections
and approximation by positive linear operators are essentially disjoint
subjects. For if L projects on the span of I, gl ,... , g/c in 5£'2(",,) and L ~ 0
then L projects on all functions F(gl , ... , g/c). If the g; separate points this says
L is the identity. From Corollary 1 alone we see that there can be no positive
Hilbert Schmidt operator taking 1 into 1 and f into f, where f is a bounded
nonsimple function. For then there would be an infinite-dimensional
eigenspace.
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